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Abstract—NAND Flash based Storage Devices (NFSDs) have
been widely employed in various systems including cloud servers
as well as mobile devices. The core component of NFSDs is
NAND Flash Memory (NFM) which has several advantages
over the conventional Hard Disk Drives (HDDs). An NFSD
typically adopts a bunch of NFMs which are operated in parallel
for maximizing the I/O throughput. However, optimizing for
performance may not be desirable from the power budget
perspective. In other words, concurrent operations of NFMs
often drain inordinate current, which leads to the violation of
the power budget allocated for a storage device. In this paper,
we propose a novel power management scheme which maximizes
concurrent operations of NFMs under the given power constraint.
The proposed method quantizes the given power constraint of an
NFSD. A quantum also called token is the basic unit of power
management. The proposed power management scheme allocates
tokens to NFMs and only the NFMs having enough tokens can
perform their operations. We call this method Multi-Token based
Power Management (MTPM). The critical issue of MTPM is
a deadlock which is resolved with the key allocation scheme.
Furthermore, we enhance MTPM to improve performance. The
extended method called Keyless MTPM (KMTPM) improves the
overall performance by relaxing the key acquisition requirement
and allowing sub-atomic operations. In the experimental results,
we confirm that the proposed methods always meet the given
power constraint. The proposed KMTPM improves throughput
by 22.85% compared to state of the art technique. In addition,
KMTPM only incurs 3.8% of performance overhead and 0.015%
of area overhead.

Index Terms—NAND flash memory, power management, peak
current, multi-token, power budget, power budget violation

I. INTRODUCTION

RECENTLY, the demand of NAND Flash based Storage
Devices (NFSDs) has been growing in various portable

devices, data centers, server machines, and laptop PCs due to
its non-volatility, high performance, small form factor, shock
resistance and so on [1], [2]. To realize a high performance
NFSD, a single NFM chip should support high I/O frequency
and throughput. However, the program throughput of a single
NFM chip has been saturated in recent years, while the
requirement of host systems is continuously increasing [3].

This work was supported in part by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government (MSIT)
(2016R1A2B4011799); in part by the MOTIE (Ministry of Trade, Industry &
Energy) (10080722, 10080590) and KSRC (Korea Semiconductor Research
Consortium) support program for the development of the future semiconductor
device; in part by SK hynix. The EDA tool was also supported by the IC
Design Education Center (IDEC), Korea.

T. You, S. Han, Y. M. Park, and E.-Y. Chung are with the School of
Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South
Korea (e-mail: eychung@yonsei.ac.kr).

H.-J. Lee is with the School of Computer Science and Engineering, Sogang
University, Seoul 04107, South Korea.

In order to overcome such circumstance, a conventional
NFSD is equipped with multiple NFM chips which are con-
nected to the NFM controller through the interconnection
network called channels and ways. This architecture enables
NFM chips to be operated in parallel for achieving high
throughput. It is obvious that interleaving operations for multi-
channel/multi-way NFM chips are an attractive method from
the performance perspective. However, this often leads to
inordinate power consumed by NFM chips, which contributes
to the system failure.

In a typical system design, each system component is
constrained by its power consumption to meet the overall
system power requirement. An NFSD is also one of the system
components and constrained by its allowable peak current
budget (i.e. power budget [4]), even though the power budget
of NFSDs varies from the servers to portable devices [5].
Therefore, increasing channels and ways for higher throughput
may inadvertently cause an NFSD to violate the given power
budget. Once an NFSD violates its power budget, the behavior
of NFM chips become unstable due to the voltage source
drop, ground bounce, signal noise, black-out, unstable NAND
operation, shutdown, and so on [3]–[7]. Therefore, an efficient
power management is essential for realizing reliable high-
performance NFSDs.

Several methods were proposed for this purpose [3], [4], [6],
[7]. The key idea of [3], [6] is to limit the parallelism of power
critical operations. In [3], [6], they focused on the program
operation since it is one of the most power critical operations.
A program operation can be divided into two sub-operations
- program execution and verify [1]. They observed that an
NFM chip drains much higher current in the pre-charge phase
of the program execution compared to the verify. Based upon
the observation, their methods prevent a program operation for
other NFM chip if at least one of other NFM chips is in the
pre-charge phase. However, these methods still vulnerable to
power budget violation as the combination of other operations
often incurs higher current than the program operation. In
[8], researches show that the read or erase operation drains
70% of current for the pre-charge phase. In other words, it
is necessary to consider all possible combinations of NFM
operations rather than focusing on a few power-critical NFM
operations. Authors in [4] proposed a channel/way architecture
so that the number of concurrent program operations can be
constrained for the given power budget. This method prevents
power violation, but performance degradation occurs due to
limited parallel operations. In [7], they consider the current of
parallel operations and shift some of them to meet the given
power budget. This allows the NFSD to operate within the
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given power budget, but performance reduction occurs due to
the delayed operations. In addition, their method is a firmware-
based method and requires space to store the sum of current for
each operation. This requires more computation and storage
space as the number of chips increases, which leads to the
scalability issue.

To resolve the issues of prior schemes, we propose a
multi-token based power management (MTPM) scheme which
considers all possible combinations of NFM operations and
minimizes performance reduction. MTPM uses the given
power budget as a hard constraint. In MTPM, we quantize the
given power budget and a quantum is called token which is the
base unit of power management. Tokens are managed in a dis-
tributed manner by the MTPM manager which is implemented
in each NFM chip. The MTPM managers are connected as
a ring network for token transfer. In this configuration, only
the NFM chips which have sufficient tokens for the requested
operations are allowed to perform their operations.

This token-based method is simple and intuitive but has
several issues to be resolved. The first issue is a deadlock. It
occurs when all NFM chips do not have enough tokens for
the requested operations. We resolve this issue by proposing
a key allocation method. The second issue is to minimize
the performance degradation due to the power management.
MTPM is a conservative method to strictly meet the given
power budget, hence it naturally suppresses the parallelism
of NFM operations. For this purpose, we model the current
consumption of each operation by tokens. Then, to resolve
the performance degradation issue, we identify the mismatch
between the current and the modeled tokens of requested
operations and provide means for accurate modeling.

The contributions of this paper are as follows. First, we
propose a token-based power management called MTPM that
strictly satisfies the power budget of NFSDs. It is compatible
with contemporary NFM controllers. We also resolve the
deadlock issue of MTPM by a key allocation method (‘key’
is described in detail in Section III-B). Second, we enhance
MTPM to reduce the overhead of key allocation. This extended
method called Keyless MTPM (KMTPM) allows more parallel
operations to improve performance. Third, we further improve
the performance of MTPM by managing the tokens in sub-
operation level. KMTPM in sub-operation level improves
average throughput by 22.85% compared to related work.

The remainder of this paper is organized as follows. In
Section II, we present the related work and motivation. In
Section III, we describe the proposed methods including
MTPM and KMPTM. Finally, we present the experimental
results in Section IV followed by the conclusions in Section V.

II. RELATED WORK AND MOTIVATION

A. Token based power management

The multi-token based power management for main memory
based on Single-Level Cell (SLC) and Multi-Level Cell (MLC)
Phase Change Memory (PCM) are proposed in [9] and [10],
respectively. These methods prevent the power budget viola-
tion as program operations are constrained by limited tokens.
In [9] and [10], one token represents the power consumed
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Fig. 1: Power violation caused by overlapping PPZs and
NPPZs under a PPZ-only management scheme

by programming one bit and the same number of tokens are
allocated to each chip. The controller monitors and stores the
number of tokens held in each chip and determines whether
transfers an operation by comparing the number of bits to
program and tokens.

However, applying these techniques to NFSDs can decrease
performance because the centralized controller continuously
monitors the holding tokens of the chips. In the case of NFSDs,
chips are connected to a channel via a shared-bus. As the
data size is increased up to 32KB [11], [12], the channel
occupancy increases. When the channel is occupied by the
large data transmission, transmitting the power management
related commands by the controller is delayed. One way to
solve this problem is to add a separate path between the
memory and the controller. However, this method increases the
complexity of the memory controller by changing the protocol
and interface [9].

In this paper, we apply MTPM to each chip, and each
chip itself determines whether an operation can be performed
within the given power budget in a distributed manner. This
method does not change protocol and interface between the
chips and the controller, thus maintaining compatibility with
conventional controllers.

B. Prior Power management schemes for NFSDs

A peak power consumption occurs at the pre-charge phase
of a program operation [3], [6]. If two or more pre-charge
phases overlap, the power supply of NFSDs drop by more
than 0.3V [6]. Therefore, prior works proposed methods to
prevent overlapping pre-charge phases.

Prior works for power management can be classified into
two. The first is to prevent overlapping pre-charge phases,
which incurs the largest peak current in NFSDs. In [6], they
added a circuit to detect pre-charge, and the NFM controller
does not issue a program operation in the case that prior pre-
charge is detected. In [3], they added a new command to start
a program operation, which prevents pre-charge duplication.
In order to perform a program operation in each chip, the
new command must be received from the NFM controller. The
power management techniques in [3] and [6] consider only the
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Fig. 2: Power utilization when limiting the number of parallel
operations

peak power zone (PPZ) of NFM operations (i.e., pre-charge of
program). However, according to [8], the peak current of read
and erase operations are 85.43% and 72.29% of the program
operation, respectively. Thus, overlapping PPZ and non-peak
power zone (NPPZ) could cause the current to exceed the
power budget of the NFSDs.

To justify the power management considering NPPZ as
well as PPZ of NFM operations, we use a simple example
shown in Fig. 1. The example only employs peak power
zone management [called PPM]. In Fig. 1, we assume that
NFSDs consist of 1-channel and 4-ways. Program operations
are performed on way 0 (w0) and way 1 (w1), and read
operations are performed on w2 and w3. As we predict, Fig. 1
shows power budget violations. Power budget violations of t1
and t3 are produced by overlapping PPZ and NPPZ, and power
budget violation of t2 is only by NPPZs. This justifies that we
need to manage the current of all types of operations, not just
program operations.

The second approach is to consider PPZs and NPPZs [4],
[7]. In [4], the maximum number of program operations
executed in parallel is determined. Therefore, subsequent
program operations beyond its maximum number have to
wait. In [7], Dynamic Current Capping (DCC) is proposed
for power management of NFSDs, which includes current
models for all operations based on a series of linear functions.
DCC calculates the current for an operation before starting
the operation using the current model in the controller and
determines the start time of the operation constrained by the
power budget. As the performance required by applications
is increasing, NFSDs increase the channel/way and parallel
processing of operations. However, the above methods limit
the parallelism of NFSDs, causing performance degradation.

Fig. 2 shows performance degradation in prior works con-
sidering both PPZ and NPPZ when limiting the number of
parallel operations. In Fig. 2, we assume that the power budget
is twice the peak current. If program operations are to be
performed in w0 and w1, the program for w2 and w3 are
delayed due to the power budget limit of the NFSD. The
delayed operations will be processed after completing in w0

and w1. In Fig. 2, the power budget of the NFSD is not

TABLE I: Atomic operations of NFSDs

Operation Atomic operation

Program (1 loop) Program Execution Verify -

Read Init. Setup Read Execution Data Out

Erase Erase Execution Verify -

exceeded, but the current is much lower than the power budget
of the NFSD. In other words, power management incurs low
power utilization, which causes performance degradation. To
overcome this, we propose the power management scheme us-
ing atomic operations which compose the NFM operation (e.g.,
program, read, erase). The atomic operations are explained in
the next section.

C. Atomic operations of NFSDs

The NFM cell contains a floating gate. The operations of
NFSDs are program, read, erase that perform injecting, sensing
and removing electrons in a floating gate, respectively [1]. As
shown in Table I, each operation consists of several atomic
operations which can be suspended and resumed.

A program operation consists of program execution and
verify. Program execution includes bit-line pre-charge and
applies a high voltage to the NFM cell to fill the floating gate
with electrons. Verify is a step to ensure that the program is
successful. A loop containing program execution and verify
is repeated several times until the program is successful [1].
A read operation determines the value by sensing the number
of electrons in the floating gate. During the initial setup, bit-
lines are discharged and the page buffer, which temporarily
stores data before programming or reading NFM cells, is
initialized to 0. Read execution is the process of sensing the
number of electrons in NFM cells. Data-out is the process
of transmitting data in the page buffer to the NFM controller
[13]. An erase operation consists of erase execution and verify.
Erase execution removes electrons from the floating gate and
verify is to ensure that the erase is successful [1].

Since each operation proceeds independently, suspension
and resumption are possible. In [14], [15], suspension and
resumption of operations (i.e. program and erase) are used
to reduce read latency. We also use atomic operations to
improve performance. To avoid power budget violation, power
consumption should be defined for all types of NFSDs’ oper-
ations. If the power management is performed per operation,
power consumption for program is defined by the program
execution as pre-charge consumes the largest power. This over-
constrains the power budget for the verify step of a program
operation. Therefore, we propose the power management per
atomic operation. Also, we define sub-atomic operations which
compose atomic operations to increase the power utilization
in Section III-D2.

III. PROPOSED METHODS

A. Overview

In this paper, we propose a power management scheme
that prevents power budget violation using multi-token. In
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TABLE II: Description of terms used in the proposed methods

Parameter
type Parameter Description

Key A Chip with a key can accumulate
tokens upon receiving a request

Power
manage-

ment
RT (Required Token) The number of tokens required to

perform operations

HT (Holding Token) The number of tokens a chip owns

UT (Used Token) The number of tokens used performing
an operation

OI (Operation
Information)

A path from a chip to MTPM for
transmitting the type of operations

OE (Operation Enable)
A path from MTPM to a chip for
indicating whether an operation can be
performed

Device
module

OTC (Operation-Token
Convertor)

Notify the required tokens of an
operation and the end of an operation

ORD (Operation
Requirement Decision)

Determine whether there is an operation
to perform or an operation is finished

SP (State Pointer) Map the state of operation to tokens

TT (Total Token) The total number of tokens in the system
PB (Power Budget) Allowable peak current in the device

Token
modeling TG (Token Granularity) The number of bits to represent the max

current

PAi,RAi, EAi
The ith atomic operation of the program,
read, and erase operation

PSAi,RSAi, ESAi
The ith sub-atomic operation of the
program, read, and erase operation

NAND 
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Cmd/data bus
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Chip 1

Way n
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Chip n

MTPM

Token Path

Operation 

Enable (OE)

Operation 

Information (OI)
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Holding TK

Used TK

MTPM

Fig. 3: Overview of multi-token based power management

short, each chip transmits an operation request to MTPM, and
MTPM checks the number of tokens it has. If the MTPM has
enough tokens to perform the operation, it sends a signal to
start the operation on the chip. In Table II, we include the
description for the terms used in the proposed methods.

Fig. 3 shows an architectural overview of NFSDs with
MTPM. The MTPM is instantiated per chip and is serially
connected to its neighbor to transfer the tokens. The MTPM
and chip are connected with two paths, Operation Information
(OI) and Operation Enable (OE). The OI is a path from a chip
to MTPM for transmitting the type of operations to perform.
OE is a path from the MTPM to the chip for indicating whether
an operation can be performed. MTPM contains three registers
for storing the tokens according to the state of the chip. The
required token (RT) represents the number of tokens required
to perform operations on the chip, and the holding token (HT)
indicates the amount of tokens it owns. When there is a request
to perform an operation on the chip, the MTPM compares RT
with HT. If the HT is larger, the operation is enabled via OE.

When the operation is performed on the chip, using token (UT)
is incremented by RT, and the unused tokens are stored in the
HT.

The proposed method performs power management for
atomic operations to improve performance. For this, the
MTPM includes the token information required by each atomic
operation. The token modeling formula is as follows.

RTi =

⌈
Ii,max

Itoken

⌉
, Itoken =

PB

TT
(1)

RTi is the RT to perform the ith atomic operation of each
operation, which is the largest current consumed in the ith
atomic operation (Ii,max) divided by the current per token
(Itoken). We use the current for each operation measured every
40 ns. Itoken is the power budget (PB) of the NFSDs divided
by the total tokens (TT ).

PB = α× Imax, TT = α× (2TG − 1) (2)

PB may differ depending on NFSDs. We assume that the
maximum current operations can be performed in half of the
total chips (i.e. α = number of chips / 2). TT may differ
depending on token granularity (TG), which is the number of
bits allocated to represent tokens for Imax.

B. Deadlock Free MTPM with Key

This section presents a deadlock-free multi-token based
power management. The use of multi-token can cause a dead-
lock. Fig. 4 indicates the deadlock problem. In this example,
NFSD has 1-channel and 4-ways. The number of TT is 10.
Each chip may be in one of four states. Each state is described
below.

• Operable State: A state that has enough tokens to perform
a given operation.

• Waiting State: A state that waits for tokens to perform a
given operation.

• Operating State: A state that is performing a given
operation.

• Ready State: No operations to perform.
In Fig. 4(a)-i, w0 and w2 require 3 and 8 tokens, respec-

tively, to perform each operation. w0 is in the operable state
because it has 10 tokens, but w2 is in the waiting state because
it does not have tokens. Other ways are in the ready state
because there is no operation to process. In Fig. 4(a)-ii, the
state of w0 transits from the operable state to the operating
state and processes its operation using 3 tokens. w0 sends
7 tokens, excluding 3 tokens being used, to the next way.
Since w1 has no operation to process, it passes 7 tokens to
w2. w2 receives 7 tokens, but still has insufficient tokens to
process its operation and the waiting continues. In Fig. 4(a)-
iii, w1 receives a command that requires 4 tokens. w1 is in the
waiting state because it does not have tokens. After completing
the operation of w0, w0 transfers 3 tokens to w1. However,
w1 requires 4 tokens to process the operation, so the waiting
state persists. As a result, both w1 and w2 have fewer tokens
than their RTs to process the given operations and a deadlock
occurs.
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Fig. 4: Two MTPM designs showing (a) deadlock and (b) no deadlock

Multi-token based MTPM may cause a deadlock as shown
in Fig. 4(a). To solve the deadlock problem of MTPM, we
add the concept of ‘key’. In order to process an operation,
MTPM must require a key as well as tokens. In Fig. 4(b), we
propose a deadlock-free key-based MTPM. Each chip must
hold a key as well as tokens to process the operation. In the
case of holding no key, tokens are transmitted to the next way.
The deadlock can be resolved since only the chip holding a
key is able to hold tokens. In Fig. 4(b)-i, w0 is in the operable
state because it owns 10 tokens that are larger than RT and a
key, and w2 is in the waiting state. In Fig. 4(b)-ii, w0 goes into
the operating state and sends the remaining 7 tokens and a key
to the next way. w1 is in the ready state and passes the key
and tokens received from w0 to w2. Since w2 in the waiting
state holds the key, it holds the tokens until enough tokens
for the operation are gathered. In Fig. 4(b)-iii, w1 receives the
operation which requires 4 tokens. It also receives 3 tokens
that were used for the operation in w0. However, since w1

does not own the key, w1 passes the received tokens to w2.
As a result, w2 has enough tokens and a key to process the
operation. As shown in the example, by adding a key, we solve
the deadlock problem caused by multiple tokens.

The flow chart of the proposed MTPM is shown in Fig. 5.
For every clock cycle, MTPM takes three different actions
depending on the state of an operation request. First, when
the chip is requested to perform an operation 1©, MTPM
checks the possession of a key. In the case that we have non-
zero HT without a key, the HT is transferred to the next way
and MTPM is terminated. The key and token information are
transferred as a single packet. When holding a key, MTPM
compares HT and RT to ensure that it has enough tokens to
perform its operation. If HT is larger than RT, MTPM set
properly registers and allows performing the operation. Then,
the remaining tokens and a key are passed to the next way. If
HT is smaller than RT, MTPM is terminated. Second, when
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Fig. 5: Overall operation flow of the MTPM

an operation is finished in the chip 2©, MTPM returns UT to
HT and passes the key and token information to the next way.
Third, when no operation is requested 3©, if the chip holds a
key or tokens, they are transmitted to the next way. The power
budget of NFSDs is equal to the total amount of tokens which
prevents power budget violation.

C. Architecture and implementation of MTPM

This section describes the architecture design of MTPM. As
shown in Fig. 6, MTPM consists of operation-token converter
(OTC), comparator, token receiver and sender.

The comparator can determine whether an operation can
be performed in the chip. It contains four registers to store
tokens and a key. The HT and key values of the comparator
are received from in PM inform, and the RT value is received
from the required token. The comparator changes the register
value according to Fig. 5 when opReq is asserted and permits
the start of an operation in the chip via OE. The end of
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the operation can be determined via return token en, and the
value of UT is returned to HT.

The token receiver and sender are interface blocks to move
the key and tokens between the ways. They perform serial-
to-parallel and parallel-to-serial conversion for key and token
information. The key and token information are validated
by incoming en and outgoing en. We serially transmit key
and token information for compatibility and low hardware
overhead. The size of key and token information is determined
by TG. An optimal TG is different depending on the power
budget and the current used for operations, which vary for
different NFSDs. That is, parallel transmission of key and to-
ken information between chips requires changing the interface
width according to NFSDs. Serial transmission is more flexible
for varying key and token information.

The OTC indicates that a chip is waiting to perform an
operation through opReq, and notifies the finish of an op-
eration through the return token en. If there are operations
to perform in the chip, the OI is converted into tokens and
transmitted to the comparator through required token. Fig. 7
shows the structure of OTC, which includes state decoder,
operation requirement decision (ORD), and state pointer (SP).

SP sends the RT corresponding to OI input to comparator
via required token output. SP contains RTs for operations. To
keep the size of the token table small, it groups operations
with the same amount of tokens. Operations with the same
RTs are ORed to address the token table. For this, we also
add a state decoder because the input types of SP (one-hot)
and OI (binary) are different. This method reduces the storage
overhead required for MTPM. The number of entries in the
token table is 2TG and one entry size is TG bits. For TG of 3
or 4, the maximum token table size is 3 or 8 bytes. In MTPM,
as all entries of the token table are not used, we can reduce
the token table size. We use 27 bits and 44 bits for 3 and 4
TG, respectively.
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Fig. 8: Timing diagram for MTPM

ORD determines whether there is an operation to perform
in the chip or an operation is finished. ORD asserts opReq
to the comparator when receiving non-zero OI values which
indicate there is an operation to perform in the chip. ORD
deasserts opReq when OE is asserted, which indicates the start
of an operation in the chip. When ORD receives zero OI which
means the finish of an operation, ORD asserts return token en
for token return.

Fig. 8 shows an example that processes an operation re-
quiring 3 tokens in MTPM. Once MTPM has a key and
enough tokens, it takes 2 cycles to calculate tokens. At time
t0, MTPM receives OI (0x1), a key, and token information via
in PM inform (0xC == 11002, MSB indicates a key and the
LSBs represent tokens). Then, OTC converts the OI to tokens.
At time t1, OTC asserts required token (0x3) and opReq (0x1)
to the comparator. Consequently, the comparator holds a key,
4 tokens for HT and 3 tokens for RT. It compares RT and HT
and asserts OE to the chip at time t2 because HT is larger
than RT. In addition, the comparator transfers one token and
a key to the token sender via out PM inform. At time t2, the
chip performs the operation triggered by OE, and the token
sender transfers the remaining one token and the key to the
next way. OI is unchanged until the operation is finished (t3),
and OTC informs the comparator that the operation is finished
via return token en at time t4. At time t5, 3 tokens used to
perform the operation are transmitted to the next way through
the token sender.

D. Enhanced MTPM

In this section, we introduce two methods to improve the
performance of MTPM. First, the operation is performed only
when a key exists in MTPM. Waiting for the key incurs
performance degradation. We enhance MTPM by allowing
operations in the case that a chip has sufficient tokens although
it does not hold a key. This method improves the performance
of NFSDs by reducing waiting time.

Secondly, we further subdivide atomic operations into sub-
atomic operations to overcome inefficient power utilization due
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Fig. 9: Overall operation flow of KMTPM

to the gap between transient operation current and modeled
token value based on the worst-case current. The proposed
method improves the performance of NFSDs by allowing
execution of more sub-atomic operations in parallel.

1) Keyless MTPM (KMTPM): Using a key in MTPM
resolves the deadlock problem. In order to perform an op-
eration, however, MTPM waits until a key is received, which
decreases the performance of the NFSDs. The KMTPM allows
operations to be performed without a key but still does not
cause a deadlock problem.

Fig. 9 shows the overall operation flow of KMTPM. The
difference from MTPM is that it can perform operations
regardless of possessing a key as long as it has sufficient
tokens. Also, a subsequent operation can be continuously
processed after an earlier operation is finished as long as HT
is greater than RT. In case of 1©, KMTPM compares HT
and RT. If HT is larger than RT, the operation is performed
regardless of a key. In the case HT is smaller than RT, KMTPM
terminates or transfers key and token information depending
on whether the chip has a key and HT. In case of 2©, KMTPM
returns the UT to HT and goes back to the start to determine
whether a subsequent operation is waiting. In case of 3©, if
the chip has a key or tokens, they are transmitted to the next
way. The proposed MTPM performs power management based
on atomic operations or sub-atomic operations (described in
detail in the next section). As there are many atomic operations
waiting for tokens and a key, the KMTPM effectively reduces
the waiting time.

2) Sub-atomic operation based token modeling: MTPM
shows a large difference in performance depending on opera-
tion modeling. Fig. 10 shows two different modeling schemes
based on atomic operations and sub-atomic operations. MTPM
models the current in each operation using tokens. Each
modeling are assigned based on the largest current generated
in each operation. In the modeling based on atomic operations,
the unit of modeling interval is atomic operation. A program
operation is performed by executing the loop of program
execution and verify repeatedly. Fig. 10 (a) shows one loop,
and we represent program execution as PA1 and verify as
PA2 according to the operation processing sequence. Read and
erase operations are also the same.

An atomic operation is divided into sub-atomic operations
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Fig. 10: Results of atomic and sub-atomic modeling schemes
(TG = 4, (a) program (1 loop), (b) read, and (c) erase).

that satisfy the condition: the power budget for subsequent
sub-atomic operations within an atomic operation is mono-
tonically decreasing. Thus, tokens for subsequent sub-atomic
operations decrease accordingly. Upon completion of a sub-
atomic operation, surplus tokens are transmitted to the next
way without suspending the subsequent sub-atomic operation.

For this, we need to define the interval for sub-atomic
based modeling. We sample the maximum current usage for
an atomic operation every sampling interval (500 ns). When
the maximum current for the subsequent interval is equal or
greater than one for the previous interval, the two intervals are
combined and formed into a sub-atomic operation. We repeat
this process until we find an interval with the maximum current
being smaller than the currently formed sub-atomic operation.
This new interval becomes the beginning segment of a new
sub-atomic operation.

If a sub-atomic operation is defined with smaller inter-
vals, the number of sub-atomic operations increases and the
memory space for storing them also increases. That is, the
smaller the interval, the higher the accuracy but the higher the
hardware overhead. We can obtain an appropriate number of
sub-atomic operations using 500 ns of modeling interval.

In the program operation, six sub-atomic operations are
defined, and they are represented PSA1 to PSA6 according
to the operation processing sequence. Similarly, read and
erase operations contain eight and nine sub-atomic operations,
respectively. Modeling schemes use equation (1) and (2) of
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Section III-A.
When the power management is performed on atomic

operations, the gap between tokens and the normalized current
is huge as shown in Fig. 10. As this gap grows, performance
degradation also increases as the gap reduces the number of
operations executed in parallel. For instance, in Fig. 10, sub-
atomic operation based modeling uses fewer tokens to process
the same operation than atomic operation based modeling. In
Fig. 10 (a), the modeling based on atomic operations uses
15 tokens during the PA1. However, PA1 is divided into 3
sub-atomic operations in the modeling based on sub-atomic
operations. Each sub-atomic operation use 15, 8, 2 tokens,
respectively. That is, PSA1 uses 15 tokens, and then PSA2

uses 8 tokens and returns 7 tokens. The returned tokens are
passed to the next way and can be used for other operation.
To increase power utilization, we break an atomic operation
into sub-atomic operations that require smaller RTs. A key
idea is that a sub-atomic operation is defined as the interval in
which spare tokens from the prior sub-atomic operation may
be transferred to the next way without suspending the current
atomic operation until its finish. In other words, current for
sub-atomic operations of an atomic operation monotonically
decreases.

As the gap between the modeled token value and the nor-
malized current decreases, we achieve the ideal performance.
For this, we define sub-atomic operations to make their token
values closer to the normalized current. We can achieve it
by increasing TG, but it increases the token transition time
between chips. Therefore, we analyze an experiment to find
the optimal value of TG in Section IV-C1.

E. Overhead analysis

In this section, we analyze the overhead of the proposed
method in terms of area and performance. First, we analyze
the area overhead. We implement the proposed method in RTL
(Register Transfer Level). To analyze overhead, we use Syn-
opsys Design Compiler [16] for a TSMC 180 nm technology.
The cell areas of MTPM, KMTPM (atomic), and KMTPM
(sub-atomic) are 17124.48 um2, 17965.44 um2, 18950.4 um2,
respectively. Since the KMTPM (sub-atomic) stores more state
information than other methods, it requires the largest area. In
[17], [18], the NFM chip size is 130 mm2 and 162.4 mm2

respectively. The area of the proposed method KMTPM (sub-
atomic) is less than 0.015 % of the NFM chip.

For TG = 4 (optimal value in Section IV-C1) and α = 4,
KMTPM (sub-atomic) requires total 77 bits for the register
(token table = 44 bits, HT and UT = 7 bits, RT = 4 bits, key
= 1 bit, token receiver and sender = 7 bits). On the other hand,
DCC in Section IV requires 144 bytes (operation information
= 82 bytes, list for power management = 64 bytes).

Second, we analyze the overhead in terms of performance
(latency). The proposed methods require a key and enough
tokens to perform an operation. Therefore, two factors affect
performance: the key and token transmission and computation
time. Upon performing each operation, the following latency
overhead (Loverhead) occurs.

TABLE III: Latency overhead of each operation
Operation Program (LSB) Read Erase

Natomic 20 3 2

Loverhead (cycles)
Min. (n=0) Max. (n=7) Min. (n=0) Max. (n=7) Min. (n=0) Max. (n=7)

40 1020 6 153 4 102

Operation Latency 770 us 52 us 7.4 ms
Loverhead,max (%) 0.66 % 1.47 % 0.01 %

Loverhead(cycles) = Natomic × (Ttrans × n+ Tcomp)

(0 ≤ n < Nchip max)
(3)

• Natomic: The number of atomic operations of each oper-
ation.

• Key and token transition time (Ttrans): Total bits for the
key and tokens (cycles). In TG = 4 and α = 4, total bits
for key and tokens are 7 (1 bit for key and 6 bits for
tokens). Transferring 7 bits takes 7 cycles.

• n: The maximum distance between the chip waiting to
perform the operation and the chip holding the tokens or
key. In this paper, the NFSD consists of 8 chips.

• MTPM computation time (Tcomp): 2 cycles
• Nchip max: The maximum number of chips in NFSD.
Sub-atomic operations within an atomic operation do not

have latency overhead because they do not have to wait for
the key and token (e.g. PSA2, PSA3, etc. in Fig. 10(a)).

Table III shows the latency overhead of the best and worst
cases for each operation in proposed methods. We assume
that the system clock is 200 Mhz. The proposed method has
low overhead in terms of latency as reported in Table III. In
MTPM, latency overhead increases as the number of NFM
chips increases and the difference between current and token
modeled gets larger. For this, we minimize overhead by
proposing KMTPM and sub-atomic based token modeling.

F. Discussion on variations and scalability

1) Temporal and spatial variations in NFSDs: In this
section, we discuss how the proposed method deals with power
and latency variations due to temporal (aging) and spatial
(process variation or variation in 3D technology) variations.
Latency is affected by these variations, but the peak current
is not affected. In [7], latency and power are measured with
respect to program/erase (P/E) cycles, and they show that
power variation due to P/E cycles is not significant. Therefore,
we only consider the effect on latency variation.

Temporal variation is caused by P/E cycles performed on
the NFM chip. As the P/E cycle increases, the tunnel oxide of
the NFM cell is damaged, allowing electrons to pass through
the tunnel oxide easily. Also, it is more easily programmed
due to tunnel oxide trapped electrons [8], [19]. That is, the
accumulation of P/E cycles reduces the latency of the program
operation. In contrast, the erase operation takes longer due to
trapped electrons. The read latency is not affected by temporal
variation [7].

MTPM is performed using only OI of an NFM chip. MTPM
reacts to the transition of atomic operations performed on
the NFM chip. That is, MTPM is not sensitive to the la-
tency change due to temporal variation. Meanwhile, KMTPM
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performs power management based on either atomic or sub-
atomic operations. The transition of atomic operations is main-
tained internally by the NFM chip and transmitted to KMTPM
(atomic). In this case, temporal variation is also handled by the
conventional NFM chip. However, in KMTPM (sub-atomic),
an NFM chip transmits OI to KMTPM after a fixed delay
and should consider temporal variation. The program or read
operation does not pose problems because the latency for
sub-atomic operations is reduced or does not change over
time even with temporal variation (aging). However, in the
erase operation with increased sub-atomic operation latency,
KMTPM may return tokens too early and cause power budget
violations. Thus, token modeling should consider the worst-
case latency for the lifetime of NFM chips. An alternative
way is to apply atomic operation based token modeling for
the erase operation.

Spatial variation is caused by the process variation and the
structure of NFSDs (2D or 3D NFSD). We assume that the
program operation repeats the loop 10 times and each loop
includes program execution and verify. However, the number
of loop iterations can vary depending on the characteristics
of the NFM cells (i.e. the process variation). In addition,
in 3D NFSDs, the page location can affect the latency of
each operation. This spatial process variation does not affect
MTPM or KMTPM (atomic) because they only respond to
the transition of each atomic operation and do not depend on
the latency of atomic operations. However, in KMTPM (sub-
atomic), the timing for the sub-atomic operations should be
modeled using the worst-case latency.

2) NFSDs with multiple channels: In this section, we
discuss how we apply the proposed method to NFSDs with
multiple channels. We can think of three potential scenarios.
First, all chips in multiple channels are connected via a single
ring network. Second, the proposed method is independently
applied to each channel. Third, tokens between channels are
transmitted via the NFM controller.

First, all chips in multiple channels are connected via a
ring network. In this case, we can apply proposed methods
to NFSD without modifying the protocol and interface of
the NFM controller. However, the overhead of MTPM will
increase as the number of chips increases because of the
elongated wait time for a key and tokens to perform operations.
KMTPM with sub-atomic based token modeling can reduce
the overhead.

Second, the proposed method is independently applied
to each channel. The proposed method can be applied to
NFSD without modifying the protocol and interface of the
NFM controller. The FTL (Flash Translation Layer) distributes
operations evenly through channel interleaving [20], [21] and
bursty operations are not likely sent to one channel. However,
sophisticated scheduling would help prevent uneven command
distribution.

Third, tokens between channels are transmitted via the NFM
controller. In this case, the centralized NFM controller contin-
uously monitors the state of each chip and transmits tokens via
a shared-bus (channel). However, as the data size increases, the
channel occupancy increases, which and disturbing monitoring
and transmitting of tokens by the NFM controller. One way to

TABLE IV: Configuration of NFSDs

Parameter Value

Number of channel/way 1 / 8

tPROG (LSB / MSB) 770us / 1.022ms

tR 52us

tBER 7.4ms

System clock [22] 200Mhz

solve this problem is to add a separate path between the NFM
chips and the controller. However, this method increases the
complexity of the NFM controller by changing the protocol
and interface.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We have designed a Synopsys Platform Architect based
trace-driven simulator to evaluate the proposed MTPM, which
includes an NFM controller, NFMs, and MTPM [23]. The
NFM controller and NFMs are implemented by systemC TLM
(Transaction Level Modeling), and MTPM is implemented in
RTL.

The NFM controller receives the address, command, and
length included in the trace and delivers commands to each
chip according to the address. Each chip performs an operation
according to the command and transfers the state of the
operation to the MTPM through OI before performing an
operation. After that, each chip performs an operation when
an enable signal is received from the MTPM through the OE.
Each chip notifies the NFM controller that the operation has
been completed after the operation ends.

Table IV indicates the timing parameter and configuration
of NFM. The tPROG, tR, and tBER are the time of a program,
read, and erase, respectively. We model both LSB (Least
Significant Bit) and MSB (Most Significant Bit) program
operation. A program operation iteratively executes a loop,
consisting of program execution and verify. In this paper, we
assume a loop is iterated 10 times for both LSB and MSB
programs. In [1], [24], the loop is iterated from 6 to 16 times
depending on NFSDs or the cell characteristics. Therefore,
assuming 10 for the number of loop iterations is reasonable. In
additional, the difference between the LSB and MSB programs
is that the number of verify in each iteration. A loop of the
LSB program includes one program execution and one verify.
Meanwhile, a loop of the MSB program includes one program
execution and several verify operations (up to 3 times) [1]. We
measure the current for each operation every 40 ns, and the
simulator uses the measurement data. We use a synthetic trace
because power violation occurs when chips process the burst
operations. A trace consists of 5000 operations and one erase
is inserted every 500 program operations. We vary the ratio
of reads and programs. The ratio of reads is increased with
the interval of 25% from 0%, which generates 5 traces (R0,
R25, R50, R75, R100). We also use real traces collected from
various systems. The read-program ratio of these traces vary.
The read ratio of Financial1/2, Web1, MSR1, and TPC-C are
23%, 82%, 99%, 12%, and 64%, respectively [25], [26].

We evaluate performance for six methods described below.
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Fig. 11: Normalized current of (a) NPM, (b) PPM, and
(c) KMTPM (sub-atomic) for trace R50

• No-power management (NPM): Applying no power man-
agement scheme.

• Peak Power management (PPM) [3], [6]: Applying power
management considering only the pre-charge phase of
the program operation. Only one chip performs the pre-
charge phase at the same time.

• Dynamic Current Capping (DCC) [7]: Calculating the
current of the operations in NFM controller and deter-
mining the start time of each operation.

• MTPM: Requiring enough tokens and a key to start
operations. Power management is performed on an atomic
operation basis.

• KMTPM (atomic): Relaxing MTPM by starting an oper-
ation provided with enough tokens. Power management
is performed on an atomic operation basis.

• KMTPM (sub-atomic): Same as KMTPM (atomic) except
for power management being performed on a sub-atomic
operation basis.

B. Experimental Results for power budget violation

Fig. 11 indicates the normalized current for NPM, PPM,
KMTPM (sub-atomic). Y-axis is the current normalized to
power budget of α = 4. As the simulator includes 8 chips,
the power budget of α = 4 means that the maximum current
operations can be performed in the half of the total chips.
Fig. 11(a) and (b) are the results for the R50 trace.

Experimental results confirm that power violation occurs
frequently. The maximum current of Fig. 11(a) is larger by
53.18% compared to the power budget and the maximum of
Fig. 11(b) is also larger by 38.01%. We confirm that NPM and
PPM incur power violations on all traces as well as R50 trace.
Especially, in Fig. 11(b), despite power management over pre-
charge phases, power budget violations in NFSDs occur due to
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Fig. 12: Throughput of KMTPM (sub-atomic) normalized to
that of MTPM (TG = 2)

the overlapping of PPZ and NPPZ as mentioned in Section II.
The results show that previous works cannot prevent power
violation completely. However, Fig. 11(c), we confirm that
KMTPM (sub-atomic) performs operations within the power
budget.

C. Experimental Results for performance

Since proposed MTPM performs operations constrained by
tokens, it can prevent power budget violations in NFSDs.
However, it may cause performance degradation. We propose
the methods to improve performance and compare results with
the best prior works.

1) Throughput with respect to modeling granularity: In-
creasing TG improves the performance by reducing the dif-
ference between the amount of required tokens and maximum
current for a given operation. However, the increment of
TG increases TT , resulting in more token storage space and
more cycles to transfer tokens between chips. To find an
optimal TG, we measure the throughput of KMTPM (sub-
atomic) under various TG configurations while varying read
and program ratios, as shown Fig. 12. The x-axis and the y-axis
represent the modeling token granularity and the throughput
normalized to MTPM (TG = 2), respectively.

Fig. 12 shows a similar trend for all traces except the
R100 trace. R100 consists of only read operations consuming
fewer tokens than other operations. Therefore, it rarely waits
for tokens, and the performance shows not much difference
for different TG values. For traces other than R100, the
throughput are maximum around TG = 4. In TG = 5, the
throughput decreases because of the large overhead due to
token transfer with respect to the performance improvement
due to TG increase. Therefore, we use TG of 4 for further
analysis.

2) Average throughput: Fig. 13 shows the improvement in
throughput by the proposed methods when TG and α are
4 and we use synthetic traces. Y-axis is normalized to the
throughput of the NPM method. In Fig. 13, NFSD cannot
perform operations in parallel on all chips due to the given
power beudget (α = 4). That is, performance degradation
occurs to meet the power budget.

On average, the throughput of KMTPM (sub-atomic) is
decreased by 6.21% compared to that of NPM. KMTPM
(sub-atomic) has less throughput degradation compared to
other methods guaranteeing power budget violation in most
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Fig. 14: Throughput normalized to NPM in real traces (α=4,
TG=4)

traces except for R100. In R100 that consists of only read
operations, performance degradation is small. Since a read
operation consumes a small number of tokens, waiting time
for tokens and a key is short, performance degradation is not
significant.

Throughput for MTPM and KMTPM (atomic) are decreased
by 22.44% and 21.65% compared to that of NPM. But
both methods show less throughput degradation than DCC.
The throughput of KMTPM (atomic) is lower by 0.79%
than MTPM. This is caused by the increased program la-
tency of KMTPM (atomic), which we describe in detail in
Section IV-C4. KMTPM (sub-atomic) improves the average
throughput by 22.85% compared to that of NPM’s normalized
DCC. KMTPM (sub-atomic) reduces waiting time for the key
by performing operations as long as there are enough tokens in
the chip. Also, a small difference between current and modeled
tokens due to fine token modeling leads to good performance
by allowing more parallel execution of operations.

DCC precomputes the current of an operation to perform
and determines the start time of the operation to prevent
power budget violation of NFSDs. If the scheduling result
of the operation causes power budget violation at time tx,
the start time of the operation is delayed after tx. DCC has
low throughput on the trace that contains read operations. As
read operation time is shorter than program operation time,
it is greatly affected by delayed time. PPM shows similar
throughput on overall traces compared to NPM. However, as
shown in Fig. 11, PPM frequently shows the power budget
violations which cause serious problems in NFSDs.

Fig. 14 shows the improvement in throughput by the
proposed methods when TG and α are 4 and we use real
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traces. The trend of throughput for real traces is similar to
synthetic traces. In the read-intensive trace (e.g. Web1), the
performance degradation of all methods is small compared to
NPM. KMTPM (sub-atomic) shows good performance for all
traces and, on average, the throughput is decreased only by
7.1% compared to NPM which has power budget violations.

3) Relationship between performance and power budget:
Fig. 15 shows the average throughput of each method with
respect to the power budget in synthetic traces. The x-axis
represents the power budget of NFSD depending on the α
value of the equation (2), whereas the y-axes on the left and the
right represent the average throughput and violation count per
milliseconds (log scale), respectively. We measure violation
count every 40ns.

In Fig. 15, as the power budget increases, the count of power
budget violations for NPM decreases and the throughputs
increase as more operations are performed in parallel. The
power budget of α = 8 is the case where the maximum current
operations are simultaneously performed on all chips. That is,
each method performs operations without the constraint of the
power budget. Therefore, for α = 8, throughput difference from
NPM can be regarded as a performance overhead. KMTPM
(sub-atomic) and DCC have performance overhead of 3.8%
and 8.21%, respectively.

For α = 4 and 5, the NPM suffers from power budget
violations. In KMTPM (sub-atomic), throughput is saturated
beyond α = 4. This means that KMTPM (sub-atomic) has the
optimal performance beyond α = 4.

4) Average latency: In this section, we analyze the pro-
posed methods in terms of latency. The latency is the time until
an operation is completed after the NFM controller transmits
the operation to the NFM chip. KMTPM (atomic) relaxes
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Fig. 17: Read latency normalized to MTPM (TG = 4)

the wait time for a key compared to MTPM, but has similar
throughput in Section IV-C2. This is due to the increase in
program latency and the decrease in read latency. KMTPM
(atomic) increases the program latency by 3.6% compared to
MTPM. However, KMTPM (atomic) decreases read latency
by 9.12%, which has the greater effect on overall system
performance [14], [27].

Fig. 16 shows the improvement in program latency of the
proposed method for TG of 4. Y-axis is normalized to the
program latency of the MTPM method.

On average, program latency increases by 3.6% in KMTPM
(atomic) and decreases by 33.9% in KMTPM (sub-atomic).
KMTPM (sub-atomic) decreases by as much as 37.27% com-
pared to the MTPM in R0. It decreases program latency for
all traces. In addition, the program latency of KMTPM (sub-
atomic) increases by only 5.97% compared to the NPM which
suffers from power budget violations.

However, in KMTPM (atomic), program latency slightly
increases compared to the MTPM. The program operation
consists of two atomic operations - PA1 and PA2 (in Sec-
tion III-D2). PA1 includes the pre-charge phase which requires
the most tokens. PA2 requires fewer tokens than the first
one. MTPM transmits the used tokens for PA1 to the next
way after completing PA1. As a result, the execution of PA2

for competing program operations are serialized. After the
first states (PA1) are completed, the second states (PA2) are
processed in parallel as they need smaller tokens. However,
a program operation in KMTPM (atomic) processes the PA2

immediately after the PA1, transmitting remaining tokens to
the next way. However, tokens are insufficient to initiate PA1

in the next way, which increases the program latency. More
details on this are discussed in the next section.

Fig. 17 presents the average read latency. As shown in
Fig. 17, read latency of KMTPM (sub-atomic) is improved in
all traces. On average, KMTPM (atomic) and KMTPM (sub-
atomic) are improved by 9.12% and 41.45% and by up to
13.39% and 59.28% in R25. KMTPM (atomic) significantly
improves read latency compared to program latency reduction
by reducing wait time of a key. Similarly, read latency of
KMTPM (sub-atomic) increases by only 3.98% compared to
the NPM.

5) Token & key wait time: Fig. 18 shows the result of
cumulative waiting time for tokens and the key at each chip
when TG is 4. Waiting time occurs when there is no key
or insufficient tokens to perform an operation. Fig. 18 is the
waiting time of atomic operations as waiting only occurs at
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the start of an atomic state that can be suspended or resumed.
Y-axis is normalized to MTPM.

KMTPM (sub-atomic) has a short waiting time for all
atomic operations. KMTPM (sub-atomic) processes the same
operation with fewer tokens and it can use the remaining
tokens to reduce the waiting time of other operations.

As in Section IV-C4, KMTPM (atomic) shows good read
performance because the waiting time of read operation com-
pared to MTPM is short. However, the program waiting time of
KMTPM (atomic) is larger than MTPM. In KMTPM (atomic),
waiting occurs in PA1 which performs a pre-charge phase that
requires the maximum current. Let’s illustrate the difference
between MTPM and KMTPM (atomic) with an example. Chip
0 is processing PA1 and chip 1 is waiting to process PA1. In
case of MTPM, used tokens are transmitted to chip 1 after
completing PA1 so that chip 1 is able to process PA1. However,
in case of KMTPM(atomic), chip 0 continues to process PA2

right after processing PA1 and transmits only the remaining
tokens to chip 1. Since the transmitted tokens are not enough
to process PA1, the chip 1 must wait. For this reason, program
latency increases for KMTPM (atomic).

Let’s take another example. Assume that chip 0 is process-
ing PA1 and chip 1 is waiting to process RA1. In MTPM, chip
1 processes RA1 after chip 0 completes PA1, and chip 0 waits
for PA2 because of insufficient tokens. However, in KMTPM
(atomic), chip 0 processes PA2 and chip 1 processes RA1 at the
same time after processing PA1. Although KMTPM (atomic)
improves parallelism by performing operations even if there is
no key, waiting time may occur when it processes operations
like PA1 requiring a lot of tokens. We solve this problem with
sub-atomic based token modeling.

V. CONCLUSION

In this paper, we propose a novel power management
scheme using tokens and a key, which guarantees no power
budget violation. This method improves performance of
throughput by maximizing parallel execution of operations.
Especially, KMTPM (sub-atomic) maximizes token utilization
by fine-grained token modeling of sub-atomic operations.

KMTPM (sub-atomic) only incurs performance overhead
of 3.8% versus NPM and area overhead of 0.015% versus
conventional NFM chip. The results of KMTPM (sub-atomic)
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method show that throughput decreases by 6.21% compared
to NPM, but it outperforms the best existing scheme (DCC)
by 22.85% in throughput.

In this paper, we evaluate the power management schemes
using one channel. Transmitting tokens between channels
increases token utilization, which can increase performance.
Therefore, we will study power management for multiple
channels in future work. Also, we will enhance the proposed
method considering the effects of temporal (aging) and spatial
(process variation or variation in 3D technology) variations in
the future work.

REFERENCES

[1] Rino Micheloni, Alessia Marelli, and Kam Eshghi. Inside solid state
drives (SSDs), volume 37. Springer Science & Business Media, 2012.

[2] George Lawton. Improved flash memory grows in popularity. Computer,
39(1):16–18, 2006.

[3] Mario Sako, Yoshihisa Watanabe, Takao Nakajima, Jumpei Sato,
Kazuyoshi Muraoka, Masaki Fujiu, Fumihiro Kono, Michio Nakagawa,
Masami Masuda, Koji Kato, et al. A low power 64 gb mlc nand-
flash memory in 15 nm cmos technology. IEEE Journal of Solid-State
Circuits, 51(1):196–203, 2016.

[4] Balgeun Yoo, Youjip Won, Seokhei Cho, Sooyong Kang, Jongmoo Choi,
and Sungroh Yoon. Ssd characterization: From energy consumption’s
perspective. In HotStorage, 2011.

[5] Jinha Park, Sungjoo Yoo, Sunggu Lee, and Chanik Park. Power
modeling of solid state disk for dynamic power management policy
design in embedded systems. In IFIP International Workshop on
Software Technolgies for Embedded and Ubiquitous Systems, pages 24–
35. Springer, 2009.

[6] Ken Takeuchi. Novel co-design of nand flash memory and nand flash
controller circuits for sub-30 nm low-power high-speed solid-state drives
(ssd). IEEE Journal of Solid-State Circuits, 44(2):1227–1234, 2009.

[7] Li-Pin Chang, Chia-Hsiang Cheng, Shu-Ting Chang, and Po-Han Chou.
Current-aware flash scheduling for current capping in solid state disks.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2018.

[8] Laura M Grupp, Adrian M Caulfield, Joel Coburn, Steven Swanson,
Eitan Yaakobi, Paul H Siegel, and Jack K Wolf. Characterizing
flash memory: anomalies, observations, and applications. In Microar-
chitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, pages 24–33. IEEE, 2009.

[9] Andrew Hay, Karin Strauss, Timothy Sherwood, Gabriel H Loh, and
Doug Burger. Preventing pcm banks from seizing too much power. In
Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 186–195. ACM, 2011.

[10] Lei Jiang, Youtao Zhang, Bruce R Childers, and Jun Yang. Fpb: Fine-
grained power budgeting to improve write throughput of multi-level
cell phase change memory. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 1–12.
IEEE Computer Society, 2012.

[11] Jin-Young Kim, Sang-Hoon Park, Hyeokjun Seo, Ki-Whan Song, Sun-
groh Yoon, and Eui-Young Chung. Nand flash memory with multiple
page sizes for high-performance storage devices. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 24(2):764–768, 2015.

[12] Yejia Di, Liang Shi, Congming Gao, Qiao Li, Kaijie Wu, and Chun Jason
Xue. Loss is gain: Shortening data for lifetime improvement on low-
cost ecc enabled consumer-level flash memory. In ACM Great Lakes
Symposium on VLSI, pages 225–230, 2018.

[13] Jin-Ki Kim, Koji Sakui, Sung-Soo Lee, Yasuo Itoh, Suk-Chon Kwon,
Kazuhisa Kanazawa, Ki-Jun Lee, Hiroshi Nakamura, Kang-Young Kim,
Toshihiko Himeno, et al. A 120-mm/sup 2/64-mb nand flash memory
achieving 180 ns/byte effective program speed. IEEE Journal of Solid-
State Circuits, 32(5):670–680, 1997.

[14] Guanying Wu and Xubin He. Reducing ssd read latency via nand flash
program and erase suspension. In FAST, volume 12, pages 10–10, 2012.

[15] Hiroshi Maejima, Kazushige Kanda, Susumu Fujimura, Teruo Takagiwa,
Susumu Ozawa, Jumpei Sato, Yoshihiko Shindo, Manabu Sato, Naoaki
Kanagawa, Junji Musha, et al. A 512gb 3b/cell 3d flash memory on a
96-word-line-layer technology. In 2018 IEEE International Solid-State
Circuits Conference-(ISSCC), pages 336–338. IEEE, 2018.

[16] Design compiler. Synopsys Inc.

[17] Seungjae Lee, Jin-yub Lee, Il-han Park, Jongyeol Park, Sung-won Yun,
Min-su Kim, Jong-hoon Lee, Minseok Kim, Kangbin Lee, Taeeun Kim,
et al. 7.5 a 128gb 2b/cell nand flash memory in 14nm technology with
tprog= 640µs and 800mb/s i/o rate. In Solid-State Circuits Conference
(ISSCC), 2016 IEEE International, pages 138–139. IEEE, 2016.

[18] Chulbum Kim, Jinho Ryu, Taesung Lee, Hyunggon Kim, Jaewoo Lim,
Jaeyong Jeong, Seonghwan Seo, Hongsoo Jeon, Bokeun Kim, Inyoul
Lee, et al. A 21 nm high performance 64 gb mlc nand flash memory
with 400 mb/s asynchronous toggle ddr interface. IEEE Journal of
Solid-State Circuits, 47(4):981–989, 2012.

[19] Ellis H Wilson, Myoungsoo Jung, and Mahmut T Kandemir. Zombi-
enand: Resurrecting dead nand flash for improved ssd longevity. In
2014 IEEE 22nd International Symposium on Modelling, Analysis &
Simulation of Computer and Telecommunication Systems, pages 229–
238. IEEE, 2014.

[20] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Shuping
Zhang. Performance impact and interplay of ssd parallelism through
advanced commands, allocation strategy and data granularity. In Pro-
ceedings of the international conference on Supercomputing, pages 96–
107. ACM, 2011.

[21] Ji-Yong Shin, Zeng-Lin Xia, Ning-Yi Xu, Rui Gao, Xiong-Fei Cai,
Seungryoul Maeng, and Feng-Hsiung Hsu. Ftl design exploration
in reconfigurable high-performance ssd for server applications. In
Proceedings of the 23rd international conference on Supercomputing,
pages 338–349. ACM, 2009.

[22] Hynix Semiconductor et al. Open nand flash interface specification.
Technical Report ONFI, 2006.

[23] Synopsys virtual prototyping solution. http://www.synopsys.com /sys-
tems/virtualprototyping/pages/default.aspx, 2013. Synopsys Inc.

[24] Yong Sung Cho, Il Han Park, Sang Yong Yoon, Nam Hee Lee,
Sang Hyun Joo, Ki-Whan Song, Kihwan Choi, Jin-Man Han, Kye Hyun
Kyung, and Young-Hyun Jun. Adaptive multi-pulse program scheme
based on tunneling speed classification for next generation multi-bit/cell
nand flash. IEEE Journal of Solid-State Circuits, 48(4):948–959, 2013.

[25] Umass trace repository.0000 http://traces.cs.umass.edu/.
[26] Storage networking industry association, 2011. http://iotta.snia.org.
[27] Minkyeong Lee, Dong Hyun Kang, Minho Lee, and Young Ik Eom.

Improving read performance by isolating multiple queues in nvme ssds.
In Proceedings of the 11th International Conference on Ubiquitous
Information Management and Communication, page 36. ACM, 2017.

Taehee You received the B.S. degree in electrical
and electronic engineering from Yonsei University
in Seoul, Korea, in 2009. He is currently a Ph.D.
candidate in Yonsei University. His research interests
include high performance system architecture and
VLSI design with the special emphasis on NVM
memory applications.

Sangwoo Han received the B.S. degree in electrical
and electronic engineering from Yonsei University
in Seoul, Korea, in 2014. He is currently a Ph.D
candidate in Yonsei University. His research inter-
ests include System-level architecture and design,
Advanced storage systems and applications.

Young Min Park received the BS degree in electri-
cal and electronic engineering from Yonsei Univer-
sity, Seoul, Korea, in 2015, where he is currently
working toward the PhD degree in electrical and
electronic engineering. His research interests include
solid-state disk system architecture and CAD flow
on near threshold voltage.



0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2953948, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

Hyuk-Jun Lee received the BS degree in computer
engineering from University of Southern California,
Los Angeles, CA, in 1993, and the MS and PhD
degrees in electrical engineering from from Stan-
ford University, Stanford, CA, in 1995 and 2001,
respectively. From 2001 to 2011, he served as a
senior engineer in routing technology group at Cisco
System, San Jose, CA, where he participated in
developing CRS-1 and CRS-3. Currently, he is a
professor with the Department of Computer Science
and Engineering, Sogang University, Seoul, Korea.

His research interests include embedded systems, low-power design, and
memory/storage architectures.

Eui-Young Chung received the BS and MS degrees
in electronics and computer engineering from Korea
University, Seoul, Korea, in 1988 and 1990, respec-
tively, and the PhD degree in electrical engineering
from Stan-ford University, Stanford, California, in
2002. From 1990 to 2005, he was a principal engi-
neer with SoC R&D Center, Samsung Electronics,
Yongin, Korea. Currently, he is a professor in the
School of Electrical and Electronics Engineering,
Yonsei University, Seoul, Korea. His research inter-
ests include system architecture, bio-computing, and

VLSI design, including all aspects of computer-aided design with the special
emphasis on low power applications, and flash memory applications. He is a
member of the IEEE.


